Deep Learning Predicts OCT Measures of Diabetic Macular Thickening From Color Fundus Photographs
Author(s) -
Filippo Arcadu,
Fethallah Benmansour,
Andreas Maunz,
John Michon,
Zdenka Hašková,
Dana McClintock,
Anthony P. Adamis,
Jeffrey R. Willis,
Marco Prunotto
Publication year - 2019
Publication title -
investigative ophthalmology and visual science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.935
H-Index - 218
eISSN - 1552-5783
pISSN - 0146-0404
DOI - 10.1167/iovs.18-25634
Subject(s) - optical coherence tomography , medicine , confidence interval , receiver operating characteristic , ophthalmology , fundus (uterus) , diabetic macular edema , cutoff , artificial intelligence , nuclear medicine , diabetic retinopathy , computer science , diabetes mellitus , physics , quantum mechanics , endocrinology
To develop deep learning (DL) models for the automatic detection of optical coherence tomography (OCT) measures of diabetic macular thickening (MT) from color fundus photographs (CFPs).
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom