Vertical Macular Asymmetry Measures Derived From SD-OCT for Detection of Early Glaucoma
Author(s) -
Farideh Sharifipour,
Esteban Morales,
Ji Woong Lee,
JoAnn A. Giaconi,
Abdelmonem A. Afifi,
Fei Yu,
Joseph Caprioli,
Kouros NouriMahdavi
Publication year - 2017
Publication title -
investigative ophthalmology and visual science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.935
H-Index - 218
eISSN - 1552-5783
pISSN - 0146-0404
DOI - 10.1167/iovs.17-21961
Subject(s) - glaucoma , medicine , ophthalmology , receiver operating characteristic , optical coherence tomography , confidence interval , optic disk , nuclear medicine
To test the hypothesis that vertical asymmetry in macular ganglion cell/inner plexiform layer (GCIPL) thickness can improve detection of early glaucoma.Sixty-nine normal eyes and 101 glaucoma eyes had macular imaging with spectral-domain optical coherence tomography (OCT; 200 × 200 cube). The resulting GCIPL thickness matrix was grouped into a 20 × 20 superpixel array and superior superpixels were compared to their inferior counterparts. A global asymmetry index (AI) was defined as the grand mean of the asymmetry ratios. To measure local asymmetry, the corresponding thickness measurements of three rows above and below the horizontal raphe were compared individually and in combinations. Global and local AIs were compared to the best-performing GCIPL thickness parameters with area under the receiver operating curves (AUC) and sensitivity/specificities.Age or axial length did not influence AIs in normal subjects (P ≥ 0.08). Global and local AIs were significantly higher in the glaucoma group compared to normal eyes. Minimum (AUC = 0.962, 95% confidence interval [CI]: 0.936-0.989) and inferotemporal thickness (AUC = 0.944, 95% CI: 0.910-0.977; P = 0.122) performed best for detection of early glaucoma. The AUC for global AI was 0.851 (95% CI: 0.792-0.909) compared to 0.916 (95% CI: 0.874-0.958) for the best local AI. Combining minimum or inferotemporal GCIPL thickness and the best local AI led to higher partial AUCs (0.088 and 0.085, 90% specificity, P = 0.120 and 0.130, respectively) than GCIPL thickness measures.Macular vertical thickness asymmetry measures did not perform better than sectoral or minimum GCIPL thickness for detection of early glaucoma. Combining local asymmetry parameters with the best sectoral GCIPL thickness measures enhanced this task.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom