z-logo
open-access-imgOpen Access
Aberrant Buildup of All-Trans-Retinal Dimer, a Nonpyridinium Bisretinoid Lipofuscin Fluorophore, Contributes to the Degeneration of the Retinal Pigment Epithelium
Author(s) -
Junli Zhao,
Yi Liao,
Jingmeng Chen,
Xinran Dong,
Zhan Gao,
Houjian Zhang,
Xiaodan Wu,
Zuguo Liu,
Yalin Wu
Publication year - 2017
Publication title -
investigative ophthalmology and visual science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.935
H-Index - 218
eISSN - 1552-5783
pISSN - 0146-0404
DOI - 10.1167/iovs.16-20734
Subject(s) - microbiology and biotechnology , lipofuscin , apoptosis , retinal degeneration , retinal pigment epithelium , biology , cell cycle , dna damage , visual phototransduction , retinal , programmed cell death , chemistry , biochemistry , dna
Nondegradable fluorophores that accumulate as deleterious lipofuscin of RPE are involved in pathological mechanisms leading to the degeneration of RPE in AMD. A2E, a major component of RPE lipofuscin, could cause damage to RPE cells. Nevertheless, all-trans-retinal dimer (atRAL dimer) was found to be much more abundant than that of A2E in eyes of Abca4-/-Rdh8-/- double-knockout (DKO) mice, a rodent model showing the typical characteristics of retinopathies in AMD patients. Our aim was to elucidate the effect and mechanism of atRAL dimer-induced RPE degeneration.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom