Aberrant Buildup of All-Trans-Retinal Dimer, a Nonpyridinium Bisretinoid Lipofuscin Fluorophore, Contributes to the Degeneration of the Retinal Pigment Epithelium
Author(s) -
Junli Zhao,
Yi Liao,
Jingmeng Chen,
Xinran Dong,
Zhan Gao,
Houjian Zhang,
Xiaodan Wu,
Zuguo Liu,
Yalin Wu
Publication year - 2017
Publication title -
investigative ophthalmology and visual science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.935
H-Index - 218
eISSN - 1552-5783
pISSN - 0146-0404
DOI - 10.1167/iovs.16-20734
Subject(s) - microbiology and biotechnology , lipofuscin , apoptosis , retinal degeneration , retinal pigment epithelium , biology , cell cycle , dna damage , visual phototransduction , retinal , programmed cell death , chemistry , biochemistry , dna
Nondegradable fluorophores that accumulate as deleterious lipofuscin of RPE are involved in pathological mechanisms leading to the degeneration of RPE in AMD. A2E, a major component of RPE lipofuscin, could cause damage to RPE cells. Nevertheless, all-trans-retinal dimer (atRAL dimer) was found to be much more abundant than that of A2E in eyes of Abca4-/-Rdh8-/- double-knockout (DKO) mice, a rodent model showing the typical characteristics of retinopathies in AMD patients. Our aim was to elucidate the effect and mechanism of atRAL dimer-induced RPE degeneration.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom