z-logo
open-access-imgOpen Access
Detecting Glaucoma Progression From Localized Rates of Retinal Changes in Parametric and Nonparametric Statistical Framework With Type I Error Control
Author(s) -
Madhusudhanan Balasubramanian,
Ery Arias-Castro,
Felipe A. Medeiros,
David Kriegman,
Christopher Bowd,
Robert N. Weinreb,
Michael Holst,
Pamela A. Sample,
Linda M. Zangwill
Publication year - 2014
Publication title -
investigative ophthalmology and visual science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.935
H-Index - 218
eISSN - 1552-5783
pISSN - 0146-0404
DOI - 10.1167/iovs.13-13246
Subject(s) - glaucoma , nonparametric statistics , ophthalmology , retinal , pixel , visual field , type i and type ii errors , medicine , optic disk , artificial intelligence , multiple comparisons problem , statistic , parametric statistics , mathematics , algorithm , computer science , statistics
We evaluated three new pixelwise rates of retinal height changes (PixR) strategies to reduce false-positive errors while detecting glaucomatous progression.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom