Improving Glaucoma Detection Using Spatially Correspondent Clusters of Damage and by Combining Standard Automated Perimetry and Optical Coherence Tomography
Author(s) -
Ali S. Raza,
Xian Zhang,
Carlos Gustavo V. De Moraes,
Charles Reisman,
Jeffrey M. Liebmann,
Robert Ritch,
Donald C. Hood
Publication year - 2014
Publication title -
investigative ophthalmology and visual science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.935
H-Index - 218
eISSN - 1552-5783
pISSN - 0146-0404
DOI - 10.1167/iovs.13-12351
Subject(s) - nerve fiber layer , glaucoma , receiver operating characteristic , optical coherence tomography , metric (unit) , computer science , inner plexiform layer , retinal , pattern recognition (psychology) , mathematics , ophthalmology , artificial intelligence , medicine , machine learning , operations management , economics
To improve the detection of glaucoma, techniques for assessing local patterns of damage and for combining structure and function were developed.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom