Linkage Analysis of Quantitative Refraction and Refractive Errors in the Beaver Dam Eye Study
Author(s) -
Alison P. Klein,
Priya Duggal,
Kristine E. Lee,
ChingYu Cheng,
Ronald Klein,
Joan E. BaileyWilson,
Barbara E.K. Klein
Publication year - 2011
Publication title -
investigative ophthalmology and visual science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.935
H-Index - 218
eISSN - 1552-5783
pISSN - 0146-0404
DOI - 10.1167/iovs.10-7096
Subject(s) - refraction , linkage (software) , genetic linkage , pedigree chart , genetics , sibling , biology , optometry , physics , medicine , gene , optics , psychology , developmental psychology
Refraction, as measured by spherical equivalent, is the need for an external lens to focus images on the retina. While genetic factors play an important role in the development of refractive errors, few susceptibility genes have been identified. However, several regions of linkage have been reported for myopia (2q, 4q, 7q, 12q, 17q, 18p, 22q, and Xq) and for quantitative refraction (1p, 3q, 4q, 7p, 8p, and 11p). To replicate previously identified linkage peaks and to identify novel loci that influence quantitative refraction and refractive errors, linkage analysis of spherical equivalent, myopia, and hyperopia in the Beaver Dam Eye Study was performed.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom