Automated Segmentation of the Optic Disc from Stereo Color Photographs Using Physiologically Plausible Features
Author(s) -
Michael D. Abràmoff,
Wallace L.M. Alward,
Emily C. Greenlee,
Lesya Shuba,
Chan Yun Kim,
John H. Fingert,
Young H. Kwon
Publication year - 2007
Publication title -
investigative ophthalmology and visual science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.935
H-Index - 218
eISSN - 1552-5783
pISSN - 0146-0404
DOI - 10.1167/iovs.06-1081
Subject(s) - optic disc , artificial intelligence , glaucoma , pixel , segmentation , computer vision , feature (linguistics) , fundus (uterus) , computer science , stereopsis , mathematics , ophthalmology , medicine , linguistics , philosophy
To evaluate a novel automated segmentation algorithm for cup-to-disc segmentation from stereo color photographs of patients with glaucoma for the measurement of glaucoma progression.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom