z-logo
open-access-imgOpen Access
ARTSCENE: A neural system for natural scene classification
Author(s) -
S. Grossberg,
Tsung-Ren Huang
Publication year - 2009
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/9.4.6
Subject(s) - artificial intelligence , computer science , gist , texture (cosmology) , natural landscape , grid , artificial neural network , benchmark (surveying) , pattern recognition (psychology) , computer vision , natural (archaeology) , image (mathematics) , geography , cartography , archaeology , medicine , stromal cell , pathology , geodesy
How do humans rapidly recognize a scene? How can neural models capture this biological competence to achieve state-of-the-art scene classification? The ARTSCENE neural system classifies natural scene photographs by using multiple spatial scales to efficiently accumulate evidence for gist and texture. ARTSCENE embodies a coarse-to-fine Texture Size Ranking Principle whereby spatial attention processes multiple scales of scenic information, from global gist to local textures, to learn and recognize scenic properties. The model can incrementally learn and rapidly predict scene identity by gist information alone, and then accumulate learned evidence from scenic textures to refine this hypothesis. The model shows how texture-fitting allocations of spatial attention, called attentional shrouds, can facilitate scene recognition, particularly when they include a border of adjacent textures. Using grid gist plus three shroud textures on a benchmark photograph dataset, ARTSCENE discriminates 4 landscape scene categories (coast, forest, mountain, and countryside) with up to 91.85% correct on a test set, outperforms alternative models in the literature which use biologically implausible computations, and outperforms component systems that use either gist or texture information alone.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom