Optimum spatiotemporal receptive fields for vision in dim light
Author(s) -
Andreas Klaus,
Eric J. Warrant
Publication year - 2009
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/9.4.18
Subject(s) - receptive field , summation , signal (programming language) , artificial intelligence , computer science , computer vision , noise (video) , nocturnal , biological system , physics , mathematics , neuroscience , image (mathematics) , biology , stimulation , programming language , astronomy
Many nocturnal insects depend on vision for daily life and have evolved different strategies to improve their visual capabilities in dim light. Neural summation of visual signals is one strategy to improve visual performance, and this is likely to be especially important for insects with apposition compound eyes. Here we develop a model to determine the optimum spatiotemporal sampling of natural scenes at gradually decreasing light levels. Image anisotropy has a strong influence on the receptive field properties predicted to be optimal at low light intensities. Spatial summation between visual channels is predicted to extend more strongly in the direction with higher correlations between the input signals. Increased spatiotemporal summation increases signal-to-noise ratio at low frequencies but sacrifices signal-to-noise ratio at higher frequencies. These results, while obtained from a model of the insect visual system, are likely to apply to visual systems in general.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom