z-logo
open-access-imgOpen Access
Task influences on the dynamic properties of fast eye movements
Author(s) -
André Kaminiarz,
K. Konigs,
Frank Bremmer
Publication year - 2009
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/9.13.1
Subject(s) - optokinetic reflex , nystagmus , eye movement , sequence (biology) , set (abstract data type) , psychology , task (project management) , computer science , audiology , artificial intelligence , medicine , chemistry , biochemistry , management , economics , programming language
It is widely debated whether fast phases of the reflexive optokinetic nystagmus (OKN) share properties with another class of fast eye movements, visually guided saccades. Conclusions drawn from previous studies were complicated by the fact that a subject's task influences the exact type of OKN: stare vs. look nystagmus. With our current study we set out to determine in the same subjects the exact dynamic properties (main sequence) of various forms of fast eye movements. We recorded fast phases of look and stare nystagmus as well as visually guided saccades. Our data clearly show that fast phases of look and stare nystagmus differ with respect to their main sequence. Fast phases of stare nystagmus were characterized by their lower peak velocities and longer durations as compared to fast phases of look nystagmus. Furthermore we found no differences between fast phases of stare nystagmus evoked with limited and unlimited dot lifetimes. Visually guided saccades were on the same main sequence as fast phases of look nystagmus, while they had higher peak velocities and shorter durations than fast phases of stare nystagmus. Our data underline the critical role of behavioral tasks (e.g., reflexive vs. intentional) for the exact spatiotemporal characteristics of fast eye movements.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom