z-logo
open-access-imgOpen Access
A multiplicative model for spatial interaction in the human visual cortex
Author(s) -
X. Zhang,
J. C. Park,
J. Salant,
S. Thomas,
Joy Hirsch,
D. C. Hood
Publication year - 2008
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/8.8.4
Subject(s) - multiplicative function , stimulus (psychology) , visual cortex , normalization (sociology) , amplitude , physics , pattern recognition (psychology) , mathematics , artificial intelligence , computer science , neuroscience , optics , psychology , mathematical analysis , cognitive psychology , sociology , anthropology
Multifocal visual evoked potentials (mfVEP) were recorded simultaneously for both the target and the neighbor stimuli, each varying over 6 levels of contrast: 0%, 4%, 8%, 16%, 32%, and 64%. For most conditions, the relationship between the amplitude of target response and the contrast of the neighbor stimulus, as well as the amplitude of the response to the target stimulus, were described with a simple, normalization model. However, when the neighbor stimulus had a much higher contrast than the target stimulus, the amplitude of the target response was larger than the prediction from the normalization model. These results suggest that spatial interaction observed in the mfVEP requires (1) multiplicative mechanisms, (2) mutual inhibition between neighboring regions, and (3) a mechanism that saturates when the ratio between the contrasts of the target and that of the neighbor is large. A modified multiplicative model that incorporates these elements describes the results.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom