A feedback model of figure-ground assignment
Author(s) -
Dražen Domijan,
Mia Šetić
Publication year - 2008
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/8.7.10
Subject(s) - representation (politics) , dorsum , computer science , surface (topology) , orientation (vector space) , convexity , artificial intelligence , biological system , geometry , mathematics , biology , politics , political science , financial economics , law , economics , anatomy
A computational model is proposed in order to explain how bottom-up and top-down signals are combined into a unified perception of figure and background. The model is based on the interaction between the ventral and the dorsal stream. The dorsal stream computes saliency based on boundary signals provided by the simple and the complex cortical cells. Output from the dorsal stream is projected to the surface network which serves as a blackboard on which the surface representation is formed. The surface network is a recurrent network which segregates different surfaces by assigning different firing rates to them. The figure is labeled by the maximal firing rate. Computer simulations showed that the model correctly assigns figural status to the surface with a smaller size, a greater contrast, convexity, surroundedness, horizontal-vertical orientation and a higher spatial frequency content. The simple gradient of activity in the dorsal stream enables the simulation of the new principles of the lower region and the top-bottom polarity. The model also explains how the exogenous attention and the endogenous attention may reverse the figural assignment. Due to the local excitation in the surface network, neural activity at the cued region will spread over the whole surface representation. Therefore, the model implements the object-based attentional selection.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom