z-logo
open-access-imgOpen Access
The role of motion capture in an illusory transformation of optic flow fields
Author(s) -
Jacob Duijnhouwer,
Richard van Wezel,
A. V. van den Berg
Publication year - 2008
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/8.4.27
Subject(s) - flow (mathematics) , illusion , focus (optics) , inducer , mechanics , optics , physics , psychology , neuroscience , chemistry , biochemistry , gene
In the optic flow illusion, the focus of an expanding optic flow field appears shifted when uniform flow is transparently superimposed. The shift is in the direction of the uniform flow, or "inducer." Current explanations relate the transformation of the expanding optic flow field to perceptual subtraction of the inducer signal. Alternatively, the shift might result from motion capture acting on the perceived focus position. To test this alternative, we replaced expanding target flow with contracting or rotating flow. Current explanations predict focus shifts in expanding and contracting flows that are opposite but of equal magnitude and parallel to the inducer. In rotary flow, the current explanations predict shifts that are perpendicular to the inducer. In contrast, we report larger shift for expansion than for contraction and a component of shift parallel to the inducer for rotary flow. The magnitude of this novel component of shift depended on the target flow speed, the inducer flow speed, and the presentation duration. These results support the idea that motion capture contributes substantially to the optic flow illusion.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom