z-logo
open-access-imgOpen Access
Amblyopic perception of biological motion
Author(s) -
Benjamin Thompson,
Nikolaus F. Troje,
Bruce C. Hansen,
Robert F. Hess
Publication year - 2008
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/8.4.22
Subject(s) - biological motion , motion (physics) , perception , masking (illustration) , motion perception , computer science , point (geometry) , computer vision , visual perception , visual processing , visual masking , signal (programming language) , artificial intelligence , communication , psychology , neuroscience , mathematics , art , geometry , visual arts , programming language
Although a number of low-level visual deficits in amblyopia have been identified, it is still unclear to what extent these deficits extend throughout the visual processing hierarchy. Biological motion perception can be a useful measure of local and global visual processing since the point-light stimuli that are often used to study this ability carry both local motion and global form information. To investigate the integrity of the biological motion processing system in amblyopia, we employed both detection and discrimination tasks with coherent or scrambled point-light walkers either alone or embedded in different types of point-light masks. These manipulations allowed for control over the amount of form and/or motion information available to the observers that could be used for task performance. We found that amblyopic eyes could process both the global form and local motion components of point-light walkers, indicating intact processing for these stimuli. However, amblyopic eyes did show an increased susceptibility to the addition of masking dots suggesting that segregation of signal from noise is deficient in amblyopia.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom