z-logo
open-access-imgOpen Access
Learning where to direct gaze during change detection
Author(s) -
Jason A. Droll,
Krista Gigone,
Mary Hayhoe
Publication year - 2007
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/7.14.6
Subject(s) - gaze , change blindness , change detection , fixation (population genetics) , cognitive psychology , orientation (vector space) , context (archaeology) , probabilistic logic , computer science , cognition , psychology , artificial intelligence , population , mathematics , paleontology , demography , geometry , sociology , neuroscience , biology
Where do observers direct their attention in complex scenes? Previous work on the cognitive control of fixation patterns in natural environments suggests that subjects must learn where to direct attention and gaze. We examined this question in the context of a change blindness paradigm, where some objects were more likely to undergo a change in orientation than others. The experiments revealed that observers are capable of learning the frequency with which objects undergo a change, and that this learning is manifested in the distribution of gaze among objects in the scene, as well as in the reaction time for detecting visual changes, and the frequency of localizing changing objects. However, observers were much less sensitive to the conditional probability of a second feature, border color, predicting a change in orientation. We conclude that striking demonstrations of change blindness may reflect not only the constraints of attention and working memory, but also what observers have learnt about what information to attend and select for storage during the task of change detection. Such exploitation of the frequency of change suggests that gaze allocation is sensitive to the probabilistic structure of the environment.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom