z-logo
open-access-imgOpen Access
The temporal properties of the response of macaque ganglion cells and central mechanisms of flicker detection
Author(s) -
Barry B. Lee,
Hao Sun,
Walter Zucchini
Publication year - 2007
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/7.14.1
Subject(s) - luminance , chromatic scale , impulse response , flicker , optics , physics , parvocellular cell , stimulus (psychology) , spatial frequency , amplitude modulation , mathematics , frequency modulation , computer science , neuroscience , bandwidth (computing) , mathematical analysis , psychology , telecommunications , central nervous system , psychotherapist , operating system
This analysis assesses sensitivity of primate ganglion cells to sinusoidal modulation as a function of temporal frequency, based on the structure of their impulse trains; sensitivity to luminance and chromatic modulation was compared to human psychophysical sensitivity to similar stimuli. Each stimulus cycle was Fourier analyzed, and response amplitudes subjected to neurometric analysis; this assumes a detector with duration inversely proportional to frequency, that is, the stimulus epoch analyzed is a single cycle rather than a fixed duration, and provides an upper bound for a detection by an observer who bases judgments on a single cell. Signal-to-noise ratio for a given Fourier amplitude rapidly decreased with temporal frequency. This is a consequence of the statistics of impulse trains making up the response; at higher temporal frequencies, there are fewer impulses per cycle. Performance of this "single-cell" observer was then compared with that of modeled central detection mechanisms of fixed duration. For chromatic modulation, a filter/detector with a time constant of approximately 40 ms operating upon the parvocellular (PC) pathway provided a match to psychophysical results, whereas for luminance modulation, a filter/detection mechanism operating upon the magnocellular (MC) pathway with a time constant of approximately 5-10 ms provided a suitable match. The effects of summation and nonlinear interactions between cell inputs to detection are also considered in terms of enhanced sensitivity and "sharpness" of thresholds, that is, the steepness of the neurometric function. For both luminance (MC cells) and chromatic modulation (PC cells), restricted convergence (<20 cells) appears adequate to provide sharp thresholds and sensitivity comparable to psychophysical performance.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom