z-logo
open-access-imgOpen Access
The parallel between reverse-phi and motion aftereffects
Author(s) -
Roger J. E. Bours,
Marijn C. W. Kroes,
M.J.M. Lankheet
Publication year - 2007
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/7.11.8
Subject(s) - motion (physics) , motion perception , physics , stimulus (psychology) , linear motion , perception , communication , classical mechanics , psychology , neuroscience , cognitive psychology
Periodically flipping the contrast of a moving pattern causes a reversal of the perceived direction of motion. This direction reversal, known as reverse-phi motion, has been generally explained with the notion that flipping contrasts actually shifted the balance of motion energy toward the opposite direction. In this sense, the reversal is trivial because any suitable motion energy detector would be optimally excited in a direction opposite to that for regular motion. This notion, however, does not address the question how these two types of motion are initially detected. Here we show several perceptual phenomena indicating that low-level detection of the two types of motion is quite different. Reverse-phi motion percepts in many respects behave more like motion aftereffects than like regular motion. Motion adaptation causes reduced activity during a stationary test stimulus, which by means of directional opponency leads to motion perceived in the opposite direction. Our findings suggest that reverse-phi motion similarly reduces the activity of low-level motion detectors.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom