z-logo
open-access-imgOpen Access
Understanding and misunderstanding extraocular muscle pulleys
Author(s) -
Joel M. Miller
Publication year - 2007
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/7.11.10
Subject(s) - pulley , extraocular muscles , anatomy , kinematics , biomechanics , differential (mechanical device) , classical mechanics , physics , physical medicine and rehabilitation , medicine , thermodynamics
As evidence has mounted for the critical role of extraocular muscle (EOM) pulleys in normal ocular motility and disease, opposition to the notion has grown more strident. We review the stages through which pulley theory has developed, distinguishing passive, coordinated, weak differential, and strong differential pulley theories and focusing on points of controversy. There is overwhelming evidence that much of the eye's kinematics, once thought to require brainstem coordination of EOM innervations, is determined by orbital biomechanics. The main criticisms of pulley theory only apply to the strong differential theory, abandoned in 2002. Critiques of the notion of dual EOM insertions are shown to be mistaken. The role of smooth muscle and the issue of rotational noncommutativity are clarified. We discuss how pulley sleeves can be stabilized as required by the theory, noting that more work needs to be done in specifying the tissues involved.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom