z-logo
open-access-imgOpen Access
Changes in expectation consequent on experience, modeled by a simple, forgetful neural circuit
Author(s) -
Andrew J. Anderson,
R. H. S. Carpenter
Publication year - 2006
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/6.8.5
Subject(s) - stimulus (psychology) , computer science , simple (philosophy) , lambda , psychology , artificial intelligence , cognitive psychology , physics , philosophy , epistemology , optics
Our expectation of an event such as a visual stimulus clearly depends on previous experience, but how the brain computes this expectation is currently not fully understood. Because expectation influences the time to respond to a stimulus, we arranged for the probability of a visual target to suddenly change and found that the time taken to make an eye movement to it then changed continuously, eventually stabilizing at a level reflecting the new probability. The time course of this change can be modeled making a simple assumption: that the brain discounts old information about the probability of an event by a factor lambda, relative to new information. The value of lambda presumably represents a compromise between responding rapidly to genuine changes in the environment and not prematurely discarding information still of value. The model we propose may be implemented by a very simple neural circuit composed of only a few neurons.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom