z-logo
open-access-imgOpen Access
High-speed navigators: Using more than what meets the eye
Author(s) -
Francesca C. Fortenbaugh,
John C. Hicks,
Hao Lei,
Kathleen A. Turano
Publication year - 2006
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/6.5.3
Subject(s) - task (project management) , gaze , perception , psychology , computer science , artificial intelligence , computer vision , cognitive psychology , engineering , systems engineering , neuroscience
This study employed a novel method to dissociate the use of external visual information and internal spatial representations in human navigation. Using a goal-directed walking task and gaze-contingent displays, 14 participants with normal vision navigated within an immersive virtual forest during which each participant's field of view (FOV) was restricted to 10, 20, or 40 deg in diameter. Participants were classified into two groups, good and poor navigators, based on a cluster analysis of their individual mean latencies, walk times, and path efficiencies in the 10 deg condition. Changes in performance measures across the three FOVs were calculated for the two groups. Significant interactions were found, with the overall performance of the poor navigators decreasing at a faster rate than the performance of the good navigators. Perceptual spans were also calculated for the two groups, and it was determined that the good navigators were able to complete the same task as effectively as the poor navigators with a smaller FOV. Collectively, these results support recent theories stating that good navigators rely on internal spatial representations to a greater extent than poor navigators do.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom