Reference frames in early motion detection
Author(s) -
Camille Morvan,
Mark Wexler
Publication year - 2005
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/5.2.4
Subject(s) - computer vision , artificial intelligence , stimulus (psychology) , computer science , reference frame , eye movement , motion detection , motion (physics) , motion perception , retina , frame (networking) , neuroscience , psychology , cognitive psychology , telecommunications
To perceive the real motion of objects in the world while moving the eyes, retinal motion signals must be compensated by information about eye movements. Here we study when this compensation takes place in the course of visual processing, and whether uncompensated motion signals are ever available. We used a paradigm based on asymmetry in motion detection: Fast-moving objects are found easier among slow-moving distractors than are slow objects among fast distractors. By coupling object motion to eye motion, we created stimuli that moved fast on the retina but slowly in an eye-independent reference frame, or vice versa. In the 100 ms after stimulus onset, motion detection is dominated by retinal motion, uncompensated for eye movements. As early as 130 ms, compensated signals become available: objects that move slowly on the retina but fast in an eye-independent frame are detected as easily as those that move fast on the retina.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom