z-logo
open-access-imgOpen Access
Inhibition of saccade and vergence eye movements in 3D space
Author(s) -
Olivier A. Coubard,
Zoı̈ Kapoula
Publication year - 2005
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/5.1.1
Subject(s) - saccade , vergence (optics) , eye movement , psychology , fixation (population genetics) , saccadic masking , communication , cognitive psychology , computer vision , neuroscience , computer science , medicine , population , environmental health
Inhibitory capacity was investigated by measuring the eye movements of normal subjects asked to fixate a central point, and to suppress eye movements toward visual distracters appearing in the periphery or in depth. Eight right-handed young adults performed such a suppression or distracter task. In different conditions, the distracter could appear at 10 degrees left or right at a distance of 20, 40, or 150 cm (calling for horizontal saccades), or in a central position far or close (calling for convergence or divergence), or 7.5 degrees up or down at 40 or 150 cm (calling for vertical saccades). Eye movements were recorded binocularly with an infrared light eye-movement device. Results showed that (1) suppression performance was not perfect, as the subjects still produced eye movements; (2) errors were distributed unequally in three-dimensional space, with more frequent errors toward distracters calling for convergence, or leftward and downward saccades at a close distance; (3) distracters calling for saccade suppression yielded saccades in the direction of the distracter (that we called prosaccades), and saccades directed away from it (that we called spontaneous antisaccades); (4) for vergence, only distracters calling for convergence yielded errors, which were always promovements; (5) in addition, a small convergent drift was found for convergence distracters. Differences in the errors between saccade and vergence suggest that different inhibitory mechanisms may be involved in the two systems. Spatial left/right, up/down, and close/far asymmetries are interpreted in terms of attentional biases.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom