z-logo
open-access-imgOpen Access
Colour constancy in context: Roles for local adaptation and levels of reference
Author(s) -
Hannah E. Smithson,
Qasim Zaidi
Publication year - 2004
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/4.9.3
Subject(s) - standard illuminant , chromatic adaptation , color constancy , adaptation (eye) , observer (physics) , perception , context (archaeology) , artificial intelligence , mathematics , subjective constancy , psychophysics , chromatic scale , stability (learning theory) , computer science , computer vision , pattern recognition (psychology) , statistics , optics , geography , psychology , physics , image (mathematics) , machine learning , archaeology , quantum mechanics , combinatorics , neuroscience
By determining the locations of boundaries between colour categories, we measured changes in the colour appearance of test-reflectances as a function of the simulated illumination. Test-reflectances were displayed against a variegated background of reflectance samples. Under prolonged adaptation to each illuminant, observers demonstrated a high degree of appearance-based colour constancy. By using backgrounds that consisted of chromatically biased sets of reflectances, we tested whether this stability depends on estimates of the illuminant's cone-coordinates based on simple scene statistics. The chromatic bias of the background had only a small effect on the classification of test materials. To compare the roles of spatially local and spatially extended estimation processes, we then (unknown to the observer) simulated different illuminants on the test and on the background. Observers continued to demonstrate reasonable colour constancy. To examine the relative roles of automatic adaptation and perceptual strategies, we reduced the duration of exposure to the test compared to exposure to the background (under the conflicting illuminant). The results suggest that mechanisms that preserve information across successive test-presentations (e.g. spatially local adaptation with a time course of a few seconds, and perceptual adjustments to levels of reference) are key determinants of the stability of colour appearance.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom