z-logo
open-access-imgOpen Access
Induced contrast asynchronies
Author(s) -
Arthur Shapiro,
A. D. D'Antona,
JeanPierre Charles,
L. A. Belano,
Jared B. Smith,
M. Shear-Heyman
Publication year - 2004
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/4.6.5
Subject(s) - luminance , physics , optics , contrast (vision) , asynchrony (computer programming) , annulus (botany) , illusion , amplitude , stimulus (psychology) , stimulus onset asynchrony , psychophysics , perception , materials science , asynchronous communication , computer science , biology , psychology , neuroscience , computer network , composite material , psychotherapist
We document a new type of perceptual effect in which asynchronous contrast signals are presented simultaneously with synchronous luminance signals. The template for the basic effect consists of two physically identical disks (.75-deg diameter, 40 cd/m2), one surrounded by a dark annulus (1.5 deg, 20 cd/m2) and the other by a light annulus (1.5 deg, 60 cd/m2). The center disks are modulated in time, with a maximum luminance of 55 cd/m2 and a minimum luminance of 25 cd/m2. With this stimulus configuration, the luminance signals of the disks modulate in phase with each other while the contrast signals relative to the surrounds modulate in anti-phase. Observers can track the contrast and luminance signals when the luminance is modulated at 1 Hz but perceive primarily the contrast signal at 2-6 Hz. We show that the asynchrony can be perceived with a thin annular surround, that the appearance of the asynchrony is dependent on the modulation amplitude, and that a decrease in the relative strength of the asynchrony at 1 Hz corresponds to the band-pass shape of the temporal contrast sensitivity function in the presence of light and dark edges. We also introduce variations of the induced contrast asynchrony principle in which a single modulated disk is surrounded by a half-light and half-dark split annulus; we refer to these configurations as the window-shade and rocking-disk illusions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom