Contour interpolation by vector-field combination
Author(s) -
C. Fantoni,
Walter Gerbino
Publication year - 2003
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/3.4.4
Subject(s) - interpolation (computer graphics) , contrast (vision) , orientation (vector space) , mathematics , smoothness , field (mathematics) , vector field , set (abstract data type) , geometry , artificial intelligence , algorithm , mathematical analysis , computer science , image (mathematics) , pure mathematics , programming language
We model the visual interpolation of missing contours by extending contour fragments under a smoothness constraint. Interpolated trajectories result from an algorithm that computes the vector sum of two fields corresponding to different unification factors: the good continuation (GC) field and the minimal path (MP) field. As the distance from terminators increases, the GC field decreases and the MP field increases. Viewer-independent and viewer-dependent variables modulate GC-MP contrast (i.e., the relative strength of GC and MP maximum vector magnitudes). Viewer-independent variables include the local geometry as well as more global properties such as contour support ratio and shape regularity. Viewer-dependent variables include the retinal gap between contour endpoints and the retinal orientation of their stems. GC-MP contrast is the only free parameter of our field model. In the case of partially occluded angles, interpolated trajectories become flatter as GC-MP contrast decreases. Once GC-MP contrast is set to a specific value, derived from empirical measures on a given configuration, the model predicts all interpolation trajectories corresponding to different types of occlusion of the same angle. Model predictions fit psychophysical data on the effects of viewer-independent and viewer-dependent variables.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom