Eye movements facilitate stereo-slant discrimination when horizontal disparity is noisy
Author(s) -
Ellen M. Berends,
Zhi-Lei Zhang,
Clifton M. Schor
Publication year - 2003
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/3.11.12
Subject(s) - foveal , fixation (population genetics) , gaze , eye movement , saccadic masking , azimuth , orientation (vector space) , mathematics , artificial intelligence , computer vision , geology , optics , computer science , physics , geometry , retinal , biology , biochemistry , gene
Conditions in which saccadic gaze shifts within planar surfaces facilitate stereo-slant discrimination for slant about the horizontal and vertical axis were investigated. When horizontal disparity noise was added, large gaze shifts in the direction of the slant lowered stereo-slant discrimination thresholds compared to thresholds measured with steady central fixation, whereas eye movements orthogonal to the slant orientation did not lower slant-discrimination thresholds. When no horizontal noise was added, performance was the same with and without gaze shifts. These results suggest that slant is recovered from depth differences between target edges when horizontal disparity signals are variable and that foveal fixation improves the measures of disparity. Eye movements did not lower slant thresholds by providing multiple foveal samples of slant at different target locations that were averaged to reduce disparity noise levels, because eye movements only lowered the thresholds when there was a depth difference between the fixation points. To study which signals for azimuth are used when slant is recovered from the difference in depth between target edges, vertical disparity noise was added and stimulus height was reduced. Both methods elevated slant-discrimination thresholds when horizontal disparity noise was present, suggesting that vertical disparity is used as a cue for azimuth.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom