Detectability of onsets versus offsets in the change detection paradigm
Author(s) -
Geoff G. Cole,
Robert W. Kentridge,
Angus Gellatly,
Charles A. Heywood
Publication year - 2003
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/3.1.3
Subject(s) - change blindness , change detection , flicker , offset (computer science) , computer science , replicate , artificial intelligence , visual field , psychology , cognitive psychology , computer vision , mathematics , statistics , neuroscience , programming language , operating system
The human visual system is particularly sensitive to abrupt onset of new objects that appear in the visual field. Onsets have been shown to capture attention even when other transients simultaneously occur. This has led some authors to argue for the special role that object onset plays in attentional capture. However, evidence from the change detection paradigm appears contradictory to such findings. Studies of change blindness demonstrate that the onset of new objects can often go unnoticed. Assessing the relative detectability of onsets compared with other visual transients in a change detection procedure may help resolve this contradiction. We report the results of four experiments investigating the efficacy with which onsets capture attention compared with offsets. In Experiment 1, we employed a standard flicker procedure and assessed whether participants were more likely to detect the change following a frame containing an onset or following a frame containing an offset. In Experiment 2, we employed the one-shot method and investigated whether participants detected more onsets or offsets. Experiment 3 used the same method but assessed whether onsets would be detected more rapidly than offsets. In Experiment 4, we investigated whether the effect obtained in Experiments 1-3 using simple shapes would replicate when images of real-world objects were used. Results showed that onsets were less susceptible to change blindness than were offsets. We argue that the preservation of information is greater in onsets than in offsets.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom