z-logo
open-access-imgOpen Access
Lateral modulation of contrast discrimination: Flanker orientation effects
Author(s) -
ChienChung Chen,
Christopher W. Tyler
Publication year - 2002
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/2.6.8
Subject(s) - pedestal , facilitation , psychology , masking (illustration) , orientation (vector space) , psychophysics , contrast (vision) , modulation (music) , neuroscience , optics , mathematics , physics , perception , acoustics , geometry , art , archaeology , visual arts , history
We used a dual-masking paradigm to study how contrast discrimination is influenced by the presence of adjacent stimuli differing in orientation. The task of the observer was to detect a vertical Gabor target superimposed on a vertical Gabor pedestal in the presence of flankers. The Gabor flankers had orientations ranging from 0 degrees (parallel to the target) to 90 degrees (orthogonal). The flankers had two different facilitatory effects: (a) Threshold facilitation. The flankers facilitated target detection at low pedestal contrasts. This facilitation was narrowly tuned to flanker orientation. (b) Pedestal enhancement. The flankers at high contrast enhanced the masking effectiveness of the pedestal. This pedestal enhancement changed little with flanker orientation. We fitted the data with a sensitivity modulation model in which the flanker effects were implemented as multiplicative factors modulating the sensitivity of the target mechanism to both excitatory and inhibitory inputs. The model parameters showed that, (a) pedestal enhancement occurs when flanker facilitation to the pedestal is greater than to the target; (b) while the sensitivity modulation was tuned sharply with flanker orientation, the ratio between the excitatory and the inhibitory factors remained constant. The explanation of the flanker orientation effect requires the both the values of each factor and the ratio between them.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom