Predicting future motion
Author(s) -
Preeti Verghese,
Suzanne P. McKee
Publication year - 2002
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/2.5.5
Subject(s) - trajectory , contrast (vision) , detector , motion (physics) , noise (video) , computer science , artificial intelligence , computer vision , physics , telecommunications , image (mathematics) , astronomy
Predicting the future course of a moving target is invaluable for planning actions. We used trajectory detection in noise to investigate this predictive capability. Using a contrast probe technique, we showed that in noise, contrast increments are more easily seen at the end of the trajectory than at the beginning. Analyses of the contrast data revealed that the improvement at the end of the trajectory was due to a substantial reduction in the number of detectors monitored, as well as to an increase in the gain of detectors responding to the increment. It appears that the first segment of the trajectory acts as an automatic cue that draws attention to subsequent segments of the trajectory, leading to enhanced detectability for predictable motion trajectories.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom