z-logo
open-access-imgOpen Access
Subtle predictive movements reveal actions regardless of social context
Author(s) -
Emalie McMahon,
Charles Zheng,
Francisco Pereira,
Ray González,
Leslie G. Ungerleider,
Maryam Vaziri-Pashkam
Publication year - 2019
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/19.7.16
Subject(s) - computer science , classifier (uml) , cognitive psychology , psychology , artificial intelligence
Humans have a remarkable ability to predict the actions of others. To address what information enables this prediction and how the information is modulated by social context, we used videos collected during an interactive reaching game. Two participants (an “initiator” and a “responder”) sat on either side of a plexiglass screen on which two targets were affixed. The initiator was directed to tap one of the two targets, and the responder had to either beat the initiator to the target (competition) or arrive at the same time (cooperation). In a psychophysics experiment, new observers predicted the direction of the initiators' reach from brief clips, which were clipped relative to when the initiator began reaching. A machine learning classifier performed the same task. Both humans and the classifier were able to determine the direction of movement before the finger lift-off in both social conditions. Further, using an information mapping technique, the relevant information was found to be distributed throughout the body of the initiator in both social conditions. Our results indicate that we reveal our intentions during cooperation, in which communicating the future course of actions is beneficial, and also during competition despite the social motivation to reveal less information.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom