z-logo
open-access-imgOpen Access
Temporal attention improves perception similarly at foveal and parafoveal locations
Author(s) -
Antonio Fernández,
Rachel N. Denison,
Marisa Carrasco
Publication year - 2019
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/19.1.12
Subject(s) - foveal , meridian (astronomy) , visual field , perception , psychology , vigilance (psychology) , visual perception , orientation (vector space) , visual processing , visual search , cognitive psychology , computer science , artificial intelligence , neuroscience , mathematics , retinal , physics , biochemistry , chemistry , geometry , astronomy
Temporal attention, the prioritization of information at a specific point in time, improves visual performance, but it is unknown whether it does so to the same extent across the visual field. This knowledge is necessary to establish whether temporal attention compensates for heterogeneities in discriminability and speed of processing across the visual field. Discriminability and rate of information accrual depend on eccentricity as well as on polar angle, a characteristic known as performance fields. Spatial attention improves speed of processing more at locations at which discriminability is lower and information accrual is slower, but it improves discriminability to the same extent across isoeccentric locations. Here we asked whether temporal attention benefits discriminability in a similar or differential way across the visual field. Observers were asked to report the orientation of one of two targets presented at different points in time at the same spatial location (fovea, right horizontal meridian, or upper vertical meridian, blocked). Temporal attention improved discriminability and shortened reaction times at the foveal and each parafoveal location similarly. These results provide evidence that temporal attention is similarly effective at multiple locations in the visual field. Consequently, at the tested locations, performance fields are preserved with temporal orienting of attention.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom