z-logo
open-access-imgOpen Access
Motion-induced blindness for dynamic targets: Further explorations of the perceptual scotoma hypothesis
Author(s) -
Joshua New,
Brian J. Scholl
Publication year - 2018
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/18.9.24
Subject(s) - blind spot , perception , computer science , filling in , feature (linguistics) , visual perception , computer vision , visual processing , motion perception , focus (optics) , blindness , artificial intelligence , motion (physics) , neuroscience , communication , cognitive psychology , psychology , optometry , physics , medicine , optics , linguistics , philosophy
Motion-induced blindness (MIB) is a striking phenomenon wherein fully visible and attended objects may repeatedly fluctuate into and out of conscious awareness when superimposed onto certain global moving patterns. Perhaps the most remarkable feature of MIB is that objects can disappear even when they are moving. Here we report several novel demonstrations of MIB for dynamic objects, including the observations that (a) MIB can occur for dynamic targets defined by various types of complex visual distortions (akin to those that may occur with various types of metamorphopsias), and (b) MIB is more robust for downward-drifting compared to upward-drifting objects (perhaps because of the related motions of floaters in the eye's vitreous humor). To interpret these results, we focus on the idea that MIB may arise not from a limitation or failure of visual processing, but instead from a perceptual scotoma: MIB may reflect a functional inference in visual processing, eliminating some novel stimuli from awareness in much the same way that the visual system chronically eliminates percepts that would otherwise arise from visual impairments (such as scotomas) or features that are not in the external world in the first place (such as shadows from retinal blood vessels).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom