z-logo
open-access-imgOpen Access
Ability to identify scene-relative object movement is not limited by, or yoked to, ability to perceive heading
Author(s) -
Simon K. Rushton,
Rongrong Chen,
Li Li
Publication year - 2018
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/18.6.11
Subject(s) - heading (navigation) , movement (music) , object (grammar) , artificial intelligence , computer vision , perception , computer science , identification (biology) , communication , psychology , geography , geodesy , philosophy , botany , neuroscience , biology , aesthetics
During locomotion humans can judge where they are heading relative to the scene and the movement of objects within the scene. Both judgments rely on identifying global components of optic flow. What is the relationship between the perception of heading, and the identification of object movement during self-movement? Do they rely on a shared mechanism? One way to address these questions is to compare performance on the two tasks. We designed stimuli that allowed direct comparison of the precision of heading and object movement judgments. Across a series of experiments, we found the precision was typically higher when judging scene-relative object movement than when judging heading. We also found that manipulations of the content of the visual scene can change the relative precision of the two judgments. These results demonstrate that the ability to judge scene-relative object movement during self-movement is not limited by, or yoked to, the ability to judge the direction of self-movement.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom