z-logo
open-access-imgOpen Access
Decision-variable correlation
Author(s) -
Stephen Sebastian,
Wilson S. Geisler
Publication year - 2018
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/18.4.3
Subject(s) - correlation , variable (mathematics) , psychology , statistics , mathematics , mathematical analysis , geometry
An extension of the signal-detection theory framework is described and demonstrated for two-alternative identification tasks. The extended framework assumes that the subject and an arbitrary model (or two subjects, or the same subject on two occasions) are performing the same task with the same stimuli, and that on each trial they both compute values of a decision variable. Thus, their joint performance is described by six fundamental quantities: two levels of intrinsic discriminability (d'), two values of decision criterion, and two decision-variable correlations (DVCs), one for each of the two categories of stimuli. The framework should be widely applicable for testing models and characterizing individual differences in behavioral and neurophysiological studies of perception and cognition. We demonstrate the framework for the well-known task of detecting a Gaussian target in white noise. We find that (a) subjects' DVCs are approximately equal to the square root of their efficiency relative to ideal (in agreement with the prediction of a popular class of models), (b) between-subjects and within-subject (double-pass) DVCs increase with target contrast and are greater for target-present than target-absent trials (rejecting many models),

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom