z-logo
open-access-imgOpen Access
Eye movement training is most effective when it involves a task-relevant sensorimotor decision
Author(s) -
Jolande Fooken,
Kathryn M. Lalonde,
Gurkiran K. Mann,
Miriam Spering
Publication year - 2018
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/18.4.18
Subject(s) - eye movement , task (project management) , eye–hand coordination , modalities , modality (human–computer interaction) , computer science , training (meteorology) , movement (music) , physical medicine and rehabilitation , psychology , artificial intelligence , cognitive psychology , medicine , engineering , social science , philosophy , physics , systems engineering , sociology , meteorology , aesthetics
Eye and hand movements are closely linked when performing everyday actions. We conducted a perceptual-motor training study to investigate mutually beneficial effects of eye and hand movements, asking whether training in one modality benefits performance in the other. Observers had to predict the future trajectory of a briefly presented moving object, and intercept it at its assumed location as accurately as possible with their finger. Eye and hand movements were recorded simultaneously. Different training protocols either included eye movements or a combination of eye and hand movements with or without external performance feedback. Eye movement training did not transfer across modalities: Irrespective of feedback, finger interception accuracy and precision improved after training that involved the hand, but not after isolated eye movement training. Conversely, eye movements benefited from hand movement training or when external performance feedback was given, thus improving only when an active interceptive task component was involved. These findings indicate only limited transfer across modalities. However, they reveal the importance of creating a training task with an active sensorimotor decision to improve the accuracy and precision of eye and hand movements.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom