Visual search reveals a critical component to shape
Author(s) -
J. Edwin Dickinson,
Krystle Haley,
Vanessa K. Bowden,
David R. Badcock
Publication year - 2018
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/18.2.2
Subject(s) - curvature , maxima , visual search , asymmetry , maxima and minima , boundary (topology) , geometry , orientation (vector space) , mathematics , coding (social sciences) , artificial intelligence , computer science , physics , mathematical analysis , statistics , art , quantum mechanics , performance art , art history
Objects are often identified by the shape of their contours. In this study, visual search tasks were used to reveal a visual dimension critical to the analysis of the shape of a boundary-defined area. Points of maximum curvature on closed paths are important for shape coding and it was shown here that target patterns are readily identified among distractors if the angle subtended by adjacent curvature maxima at the target pattern's center differs from that created in the distractors. A search asymmetry, indicated by a difference in performance in the visual search task when the roles of target and distractor patterns are reversed, was found when the critical subtended angle was only present in one of the patterns. Performance for patterns with the same subtended angle but differing local orientation and curvature was poor, demonstrating insensitivity to differences in these local features of the patterns. These results imply that the discrimination of objects by the shape of their boundaries relies on the relative positions of their curvature maxima rather than the local properties of the boundary from which these positions are derived.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom