z-logo
open-access-imgOpen Access
Psychometric functions of uncertain template matching observers
Author(s) -
Wilson S. Geisler
Publication year - 2018
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/18.2.1
Subject(s) - function (biology) , noise (video) , matching (statistics) , simple (philosophy) , white noise , orientation (vector space) , position (finance) , psychometric function , mathematics , weibull distribution , expression (computer science) , computer science , template matching , pattern recognition (psychology) , artificial intelligence , statistics , algorithm , image (mathematics) , psychology , perception , psychophysics , geometry , philosophy , epistemology , finance , evolutionary biology , neuroscience , economics , biology , programming language
This theoretical note describes a simple equation that closely approximates the psychometric functions of template-matching observers with arbitrary levels of position and orientation uncertainty. We show that the approximation is accurate for detection of targets in white noise, 1/f noise, and natural backgrounds. In its simplest form, this equation, which we call the uncertain normal integral (UNI) function, has two parameters: one that varies only with the level of uncertainty and one that varies only with the other properties of the stimuli. The UNI function is useful for understanding and generating predictions of uncertain template matching (UTM) observers. For example, we use the UNI function to derive a closed-form expression for the detectability (d') of UTM observers in 1/f noise, as a function of target amplitude, background contrast, and position uncertainty. As a descriptive function, the UNI function is just as flexible and simple as other common descriptive functions, such as the Weibull function, and it avoids some of their undesirable properties. In addition, the estimated parameters have a clear interpretation within the family of UTM observers. Thus, the UNI function may be the better default descriptive formula for psychometric functions in detection and discrimination tasks.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom