On the origin of sensory errors: Contrast discrimination under temporal constraint
Author(s) -
Jonathan R. Flynn,
Harel Z. Shouval
Publication year - 2017
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/17.8.6
Subject(s) - percept , perception , stimulus (psychology) , sensory system , computer science , psychophysics , contrast (vision) , artificial intelligence , pattern recognition (psychology) , speech recognition , cognitive psychology , psychology , neuroscience
Estimation of perceptual variables is imprecise and prone to errors. Although the properties of these perceptual errors are well characterized, the physiological basis for these errors is unknown. One previously proposed explanation for these errors is the trial-by-trial variability of the responses of sensory neurons that encode the percept. In order to test this hypothesis, we developed a mathematical formalism that allows us to find the statistical characteristics of the physiological system responsible for perceptual errors, as well as the time scale over which the visual information is integrated. Crucially, these characteristics can be estimated solely from a behavioral experiment performed here. We demonstrate that the physiological basis of perceptual error has a constant level of noise (i.e., independent of stimulus intensity and duration). By comparing these results to previous physiological measurements, we show that perceptual errors cannot be due to the variability during the encoding stage. We also find that the time window over which perceptual evidence is integrated lasts no more than ∼230 ms. Finally, we discuss sources of error that may be consistent with our behavioral measurements.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom