z-logo
open-access-imgOpen Access
Inferring the stiffness of unfamiliar objects from optical, shape, and motion cues
Author(s) -
Filipp Schmidt,
Vivian C. Paulun,
Jan Jaap R. van Assen,
Roland W. Fleming
Publication year - 2017
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/17.3.18
Subject(s) - stiffness , motion (physics) , sensory cue , inference , computer vision , artificial intelligence , computer science , physics , thermodynamics
Visually inferring the stiffness of objects is important for many tasks but is challenging because, unlike optical properties (e.g., gloss), mechanical properties do not directly affect image values. Stiffness must be inferred either (a) by recognizing materials and recalling their properties (associative approach) or (b) from shape and motion cues when the material is deformed (estimation approach). Here, we investigated interactions between these two inference types. Participants viewed renderings of unfamiliar shapes with 28 materials (e.g., nickel, wax, cork). In Experiment 1, they viewed nondeformed, static versions of the objects and rated 11 material attributes (e.g., soft, fragile, heavy). The results confirm that the optical materials elicited a wide range of apparent properties. In Experiment 2, using a blue plastic material with intermediate apparent softness, the objects were subjected to physical simulations of 12 shape-transforming processes (e.g., twisting, crushing, stretching). Participants rated softness and extent of deformation. Both correlated with the physical magnitude of deformation. Experiment 3 combined variations in optical cues with shape cues. We find that optical cues completely dominate. Experiment 4 included the entire motion sequence of the deformation, yielding significant contributions of optical as well as motion cues. Our findings suggest participants integrate shape, motion, and optical cues to infer stiffness, with optical cues playing a major role for our range of stimuli.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom