The effect of supine body position on human heading perception
Author(s) -
Nadine Hummel,
Luigi F. Cuturi,
Paul R. MacNeilage,
Virginia L. Flanagin
Publication year - 2016
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/16.3.19
Subject(s) - supine position , vestibular system , computer vision , motion perception , coronal plane , horizontal plane , perception , heading (navigation) , artificial intelligence , motion (physics) , orientation (vector space) , transverse plane , psychology , physics , physical medicine and rehabilitation , computer science , anatomy , geodesy , medicine , neuroscience , mathematics , geography , geometry , surgery
The use of virtual environments in functional imaging experiments is a promising method to investigate and understand the neural basis of human navigation and self-motion perception. However, the supine position in the fMRI scanner is unnatural for everyday motion. In particular, the head-horizontal self-motion plane is parallel rather than perpendicular to gravity. Earlier studies have shown that perception of heading from visual self-motion stimuli, such as optic flow, can be modified due to visuo-vestibular interactions. With this study, we aimed to identify the effects of the supine body position on visual heading estimation, which is a basic component of human navigation. Visual and vestibular heading judgments were measured separately in 11 healthy subjects in upright and supine body positions. We measured two planes of self-motion, the transverse and the coronal plane, and found that, although vestibular heading perception was strongly modified in a supine position, visual performance, in particular for the preferred head-horizontal (i.e., transverse) plane, did not change. This provides behavioral evidence in humans that direction estimation from self-motion consistent optic flow is not modified by supine body orientation, demonstrating that visual heading estimation is one component of human navigation that is not influenced by the supine body position required for functional brain imaging experiments.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom