z-logo
open-access-imgOpen Access
Modulating foveal representation can influence visual discrimination in the periphery
Author(s) -
Qing Yu,
Won Mok Shim
Publication year - 2016
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/16.3.15
Subject(s) - foveal , stimulus (psychology) , peripheral , peripheral vision , perception , psychology , afterimage , communication , computer vision , computer science , neuroscience , cognitive psychology , ophthalmology , medicine , retinal , image (mathematics) , operating system
A previous study by Williams et al. (2008) provided evidence for a novel form of feedback in the visual system, whereby peripheral information is contained in foveal retinotopic cortex. Beyond its possible implication for peripheral object recognition, few studies have examined the effect of a direct behavioral manipulation of the foveal feedback representation. To address this question, we measured participants' peripheral visual discrimination performance while modulating their foveal representation in a series of psychophysical experiments. On each trial, participants discriminated the identities of briefly presented novel, three-dimensional objects or the orientations of gratings in a peripheral location while fixating at the center. Besides the peripheral target, another stimulus (foil) was also presented and masked at the fovea. Our results showed that for objects, when the foveal foil that was identical to the peripheral target was presented 150 ms after the onset of the peripheral target, visual discrimination of the peripheral target was improved. This congruency effect occurred even though participants did not consciously perceive the foveal stimulus. No such effect was observed when the foveal foil was presented simultaneously with the peripheral target, or when the foil was presented in a parafoveal location. The foil effect in gratings was different from that in objects in terms of its effective timing and foveal specificity, suggesting that foveal feedback may be specific to high-level objects. These results indicate that modulating foveal information can affect individuals' ability to discriminate peripheral objects, suggesting a functional role of foveal representations in peripheral visual perception.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom