Visual input that matches the content of visual working memory requires less (not faster) evidence sampling to reach conscious access
Author(s) -
Surya Gayet,
Leendert van Maanen,
Micha Heilbron,
Chris Paffen,
Stefan Van der Stigchel
Publication year - 2016
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/16.11.26
Subject(s) - working memory , perception , recall , visual perception , computer science , visual processing , representation (politics) , cognitive psychology , psychology , artificial intelligence , neuroscience , cognition , politics , political science , law
The content of visual working memory (VWM) affects the processing of concurrent visual input. Recently, it has been demonstrated that stimuli are released from interocular suppression faster when they match rather than mismatch a color that is memorized for subsequent recall. In order to investigate the nature of the interaction between visual representations elicited by VWM and visual representations elicited by retinal input, we modeled the perceptual processes leading up to this difference in suppression durations. We replicated the VWM modulation of suppression durations, and fitted sequential sampling models (linear ballistic accumulators) to the response time data. Model comparisons revealed that the data was best explained by a decrease in threshold for visual input that matches the content of VWM. Converging evidence was obtained by fitting similar sequential sampling models (shifted Wald model) to published datasets. Finally, to confirm that the previously observed threshold difference reflected processes occurring before rather than after the stimuli were released from suppression, we applied the same procedure to the data of an experiment in which stimuli were not interocularly suppressed. Here, we found no decrease in threshold for stimuli that match the content of VWM. We discuss our findings in light of a preactivation hypothesis, proposing that matching visual input taps into the same neural substrate that is already activated by a representation concurrently maintained in VWM, thereby reducing its threshold for reaching visual awareness
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom