z-logo
open-access-imgOpen Access
The global structure of the visual light field and its relation to the physical light field
Author(s) -
Tatiana Kartashova,
Dragan Sekulovski,
Huib de Ridder,
Susan F. te Pas,
Sylvia C. Pont
Publication year - 2016
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/16.10.9
Subject(s) - light field , light intensity , field (mathematics) , visual field , optics , visual space , computer vision , computer science , point (geometry) , physics , artificial intelligence , mathematics , geometry , psychology , perception , neuroscience , pure mathematics
Human observers have been demonstrated to be sensitive to the local (physical) light field, or more precisely, to the primary direction, intensity, and diffuseness of the light at a point in a space. In the present study we focused on the question of whether it is possible to reconstruct the global visual light field, based on observers’ inferences of the local light properties. Observers adjusted the illumination on a probe in order to visually fit it in three diversely lit scenes. For each scene they made 36 settings on a regular grid. The global structure of the first order properties of the light field could then indeed be reconstructed by interpolation of light vectors coefficients representing the local settings. We demonstrate that the resulting visual light fields (individual and averaged) can be visualized and we show how they can be compared to physical measurements in the same scenes. Our findings suggest that human observers have a robust impression of the light field that is simplified with respect to the physical light field. In particular, the subtle spatial variations of the physical light fields are largely neglected and the visual light fields were more similar to simple diverging fields than to the actual physical light fields

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom