z-logo
open-access-imgOpen Access
Dichoptic color saturation mixture: Binocular luminance contrast promotes perceptual averaging
Author(s) -
Frederick A. A. Kingdom,
Lauren Libenson
Publication year - 2015
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/15.5.2
Subject(s) - luminance , hue , contrast (vision) , chromatic scale , saturation (graph theory) , optics , brightness , perception , mathematics , binocular vision , color vision , high contrast , psychology , computer vision , communication , artificial intelligence , computer science , physics , neuroscience , combinatorics
We demonstrate a new type of interaction between suprathreshold color (chromatic) and luminance contrast in the context of binocular vision. When two isoluminant colored disks of identical hue but different saturations are presented to different eyes, the apparent saturation of the resulting "dichoptic" mix is close to that of the more saturated patch if presented binocularly. This result is commensurate with previous findings using luminance contrast and is close to the scenario termed "winner-take-all." However, when binocularly matched luminance contrast is added to the dichoptic saturation mixture, the apparent saturation of the mixture shifts away from winner-take-all towards the average of the two dichoptic saturations. The likely cause of this effect is that the matched luminance contrasts reduce the interocular suppression between the unmatched color saturations. We suggest that the presence of binocularly matched luminance contrast promotes the interpretation that the dichoptic color saturations, even though unmatched, nevertheless originate from the same object. We term this idea the "object commonality" hypothesis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom