z-logo
open-access-imgOpen Access
Modeling visual clutter perception using proto-object segmentation
Author(s) -
Chen-Ping Yu,
Dimitris Samaras,
G. J. Zelinsky
Publication year - 2014
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/14.7.4
Subject(s) - clutter , artificial intelligence , computer science , object (grammar) , pattern recognition (psychology) , perception , representation (politics) , ranking (information retrieval) , computer vision , segmentation , set (abstract data type) , psychology , radar , telecommunications , neuroscience , politics , political science , law , programming language
We introduce the proto-object model of visual clutter perception. This unsupervised model segments an image into superpixels, then merges neighboring superpixels that share a common color cluster to obtain proto-objects-defined here as spatially extended regions of coherent features. Clutter is estimated by simply counting the number of proto-objects. We tested this model using 90 images of realistic scenes that were ranked by observers from least to most cluttered. Comparing this behaviorally obtained ranking to a ranking based on the model clutter estimates, we found a significant correlation between the two (Spearman's ρ = 0.814, p < 0.001). We also found that the proto-object model was highly robust to changes in its parameters and was generalizable to unseen images. We compared the proto-object model to six other models of clutter perception and demonstrated that it outperformed each, in some cases dramatically. Importantly, we also showed that the proto-object model was a better predictor of clutter perception than an actual count of the number of objects in the scenes, suggesting that the set size of a scene may be better described by proto-objects than objects. We conclude that the success of the proto-object model is due in part to its use of an intermediate level of visual representation-one between features and objects-and that this is evidence for the potential importance of a proto-object representation in many common visual percepts and tasks.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom