Effects of number, complexity, and familiarity of flankers on crowded letter identification
Author(s) -
Myriam Chanceaux,
Sebastiaan Mathôt,
Jonathan Grainger
Publication year - 2014
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/14.6.7
Subject(s) - visual field , fixation (population genetics) , identification (biology) , pattern recognition (psychology) , similarity (geometry) , interference (communication) , psychology , string (physics) , feature (linguistics) , artificial intelligence , computer science , communication , speech recognition , mathematics , neuroscience , image (mathematics) , biology , linguistics , mathematical physics , computer network , biochemistry , channel (broadcasting) , botany , philosophy , gene
We tested identification of target letters surrounded by a varying number (2, 4, 6) of horizontally aligned flanking elements. Strings were presented left or right of a central fixation dot, and targets were always at the center of the string. Flankers could be other letters, digits, symbols, simple shapes, or false fonts, and thus varied both in terms of visual complexity and familiarity. Two-alternative forced choice (2AFC) speed and accuracy was measured for choosing the target letter versus an alternative letter that was not present in the string. Letter identification became harder as the number of flankers increased. Greater flanker complexity led to more interference in target identification, whereas more complex targets were easier to identify. Effects of flanker complexity were found to depend on visual field and position of flankers, with the strongest effects seen for leftward flankers in the left visual field. Visual complexity predicted flanker interference better than familiarity, and better than target-flanker similarity. These results provide further support for an excessive feature-integration account of the interfering effects of both adjacent and nonadjacent flanking elements in horizontally aligned strings.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom