z-logo
open-access-imgOpen Access
Crowding is reduced by onset transients in the target object (but not in the flankers)
Author(s) -
John A. Greenwood,
Bilge Sayim,
Patrick Cavanagh
Publication year - 2014
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/14.6.2
Subject(s) - crowding , peripheral vision , psychology , psychophysics , stimulus (psychology) , audiology , perception , cognitive psychology , artificial intelligence , computer science , neuroscience , medicine
In peripheral vision, objects that are visible in isolation become difficult to identify in clutter. This crowding effect is typically strong when objects are similar in a given dimension (e.g., color) and weak when they differ. Here we examine the selectivity of crowding for temporal differences-namely, the transient signals associated with object onsets and offsets. Observers judged the orientation of a peripheral Gabor target surrounded by four flankers. Midway through each trial, selected elements "blinked" off and on again. Performance was poor (crowding was strong) when all Gabors blinked simultaneously or when only the flankers blinked. In contrast, performance improved dramatically when the target alone blinked despite the continued presence of the flankers. This asymmetric release from crowding occurs across a range of blink durations and target-flanker separations. A similar release was found when the target onset was delayed relative to the flanker onsets, though varying the target offset had little effect. This suggests that blinks (composed of offset and onset events) reduce crowding specifically because they separate target and flanker onsets. Finally, with luminance pedestals added to the Gabors, crowding was reduced by blinks in the target pedestal only when the target Gabor was present; pedestal blinks before/after the stimulus Gabors (as precues/postcues) had no effect. That is, transients do not simply cue the target location. The asymmetry of this effect (reduced crowding with target transients, no effect with flanker transients) also precludes explanations based on similarity or grouping. We attribute our findings to the isolation of the target in transient (vs. sustained) visual channels.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom