z-logo
open-access-imgOpen Access
Object-centered reference frames in depth as revealed by induced motion
Author(s) -
Jean Léveillé,
Emma Myers,
A. Yazdanbakhsh
Publication year - 2014
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/14.3.15
Subject(s) - computer vision , motion (physics) , reference frame , perspective (graphical) , frame (networking) , artificial intelligence , perpendicular , context (archaeology) , depth perception , object (grammar) , representation (politics) , computer science , mathematics , communication , optics , physics , geometry , psychology , perception , geology , telecommunications , paleontology , neuroscience , politics , political science , law
An object-centric reference frame is a spatial representation in which objects or their parts are coded relative to others. The existence of object-centric representations is supported by the phenomenon of induced motion, in which the motion of an inducer frame in a particular direction induces motion in the opposite direction in a target dot. We report on an experiment made with an induced motion display where a degree of slant is imparted to the inducer frame using either perspective or binocular disparity depth cues. Critically, the inducer frame oscillates perpendicularly to the line of sight, rather than moving in depth. Participants matched the perceived induced motion of the target dot in depth using a 3D rotatable rod. Although the frame did not move in depth, we found that subjects perceived the dot as moving in depth, either along the slanted frame or against it, when depth was given by perspective and disparity, respectively. The presence of induced motion is thus not only due to the competition among populations of planar motion filters, but rather incorporates 3D scene constraints. We also discuss this finding in the context of the uncertainty related to various depth cues, and to the locality of representation of reference frames.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom