z-logo
open-access-imgOpen Access
Feature integration within and across visual streams occurs at different visual processing stages
Author(s) -
Clint J. Perry,
Ahmed Tahiri,
Mazyar Fallah
Publication year - 2014
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/14.2.10
Subject(s) - visual processing , computer vision , feature (linguistics) , artificial intelligence , segmentation , computer science , illusion , object (grammar) , dorsum , perception , optical illusion , process (computing) , motion perception , motion (physics) , pattern recognition (psychology) , communication , neuroscience , biology , psychology , anatomy , linguistics , philosophy , operating system
Direction repulsion is a perceptual illusion in which the directions of two superimposed surfaces are repulsed away from the real directions of motion. The repulsion is reduced when the surfaces differ in dorsal stream features such as speed. We have previously shown that segmenting the surfaces by color, a ventral stream feature, did not affect repulsion but instead reduced the time needed to process both surfaces. The current study investigated whether segmenting two superimposed surfaces by a feature coprocessed with direction in the dorsal stream (i.e., speed) would also reduce processing time. We found that increasing the speed of one or both surfaces reduced direction repulsion. Since color segmentation does not affect direction repulsion, these results suggest that motion processing integrates speed and direction prior to forming an object representation that includes ventral stream features such as color. Like our previous results for differences in color, differences in speed also decreased processing time. Therefore, the reduction in processing time derives from a later processing stage where both ventral and dorsal features bound into the object representations can reduce the time needed for decision making when those features differentiate the superimposed surfaces from each other.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom