z-logo
open-access-imgOpen Access
Spatiotemporal dynamics of perisaccadic remapping in humans revealed by classification images
Author(s) -
M. Panichi,
David C. Burr,
Maria Concetta Morrone,
Stefano Baldassi
Publication year - 2012
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/12.4.11
Subject(s) - saccadic masking , eye movement , computer vision , fixation (population genetics) , saccadic suppression of image displacement , artificial intelligence , computer science , smooth pursuit , dynamics (music) , visual space , saccade , neuroscience , psychology , biology , perception , pedagogy , biochemistry , gene
We actively scan our environment with fast ballistic movements called saccades, which create large and rapid displacements of the image on the retina. At the time of saccades, vision becomes transiently distorted in many ways: Briefly flashed stimuli are displaced in space and in time, and spatial and temporal intervals appear compressed. Here we apply the psychophysical technique of classification images to study the spatiotemporal dynamics of visual mechanisms during saccades. We show that saccades cause gross distortions of the classification images. Before the onset of saccadic eye movements, the positive lobes of the images become enlarged in both space and in time and also shifted in a systematic manner toward the pre-saccadic fixation (in space) and anticipated in time by about 50 ms. The transient reorganization creates a spatiotemporal organization oriented in the direction of saccadic-induced motion at the time of saccades, providing a potential mechanism for integrating stimuli across saccades, facilitating stable and continuous vision in the face of constant eye movements

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom